3.有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?
4 g9 [" O8 H: L* h3 W! S3 {2 f) j7 P" S7 j
答:一共付出的30元包括27元(25元给老板+小弟贪污2元)和每人退回1元(共3元),拿27和2元相加纯属混淆视听。# ^9 t( c7 |/ i, h3 ]8 v
* e) G& C& m3 z9 m/ l4.有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?+ C% f& ~& W: U" |( C' S
/ n6 L0 i Y \) U4 J; J" Q
答:每对袜子都拆开,每人各拿一支,袜子无左右,最后取回黑袜和白袜各两对。
1 _1 ^7 a. \. O4 @
+ ?. |8 Y& j+ [6 C5.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
6 m* B/ o# e' }1 T+ Y1 Z& b3 `
# I6 ^% Y! ?% _2 T8 \4 `答:两个火车在相聚的之前鸟是一直在匀速飞行的,设:洛杉矶纽约距离为A,则鸟飞行的时间为A/(10+20),在乘以30就是鸟的飞行距离。
" O: ?1 M @- O l1 r3 g' J6 X, s4 ~% X! C3 M
6.你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
M: a& C' x$ V
* M0 G3 t# Y/ {$ ^$ y答:一个罐子放一个红球,另一个罐子放49个红球和50个蓝球,概率接近75%。这是所能达到的最大概率了。实际上,只要一个罐子放<50个红球,不放篮球,另一个罐子放剩下的球,拿出红球的概率就大于50%) C" \# p2 I, m) G
0 ?: s( G# F; K* _5 v- Z9 D( A7.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
5 i I$ T. @( w" P8 C+ r- h. R# r" g8 @2 x5 G
答:1号罐取1丸,2号罐取2丸,3号罐取3丸,4号罐取4丸,称量该10个药丸,比正常重量重几就是几号罐的药有问题。
9 O. s% `9 z8 J9 S+ r2 \$ i9 P) _' q5 V' f) D2 w% ^
8.你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
+ q3 p) W5 ?7 ], C. r
$ A. R5 n3 X% |; e, ^' [$ B答:4个因为只有三种颜色,当你拿到4个时候一定有重复的。
! C( u( L- o. r- x" C( i
; E4 j( f/ V+ \/ c! a4 e9.对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。( `; W! B1 k2 C6 d+ o/ Y
- }% g v1 i, ]3 i7 @6 j$ Z
答:1,4,9,16,25,36,49,64,81,100 I1 [2 d8 d+ K9 f t3 z
6 |! H& d! t# ?- P1 S3 Q1 v
所有的质数因为都只有1和他本身两个约数,所以都会先下后上各一次.故最后的状态为开。而合数至少有两个或两个以上的约数,如果它有偶数个不同的约数时,这个合数所对应开关的状态将为开.如果它有奇数个约数时,则对应开关将为关.我们知道任何一个合数当它只有奇数个约数时,必然是它某个约数的平方.检查1-100所有的数,可得到答案。
! Q% y1 ] m3 m/ l4 J/ k7 t6 ?/ ~- _5 Q7 j F* D; \+ B( G% ]
10.想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
5 s5 Q% L: X! }: ]+ q% B7 {7 g% R9 c4 D2 U
答:镜像对称的轴是人的中轴
% [8 c' h2 A/ S. @6 E
) U$ O Z0 {, W, {11.一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
& j7 e3 S- |5 a
. L) ` j6 g3 I* R$ M' X' _% S答:有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯定自己为黑。于是第一次关灯就应该有声。可以断定N>1。对于每个戴黑的人来说,他能看见N-1顶黑帽,并由此假定自己为白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。
, C0 o% C0 M: P/ }& {
: W, O; c6 [" s12.两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
7 P1 E' ~7 z% Z J& n1 y& Z( U2 b5 y
答:都是2周! Z+ x$ Q/ `# o' F. @3 F4 Q
, x, G {1 b: t7 l0 X13.1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?2 G+ @# H: I) y+ C% X) I) v
- u1 I9 v- @" w# t8 I* @
答:20元买20瓶,喝完换10瓶,再喝完换5瓶,再喝完换2瓶剩1空瓶,再喝完换1瓶,和剩的空瓶一起换1瓶,喝完只有1个空瓶,要1瓶喝掉,又是1个空瓶,和刚才那个空瓶一起给刚好2个空瓶。所以一共喝20+10+5+2+1+1+1=40瓶。
4 P3 ?4 n: W- ~+ q2 J( F/ w, p0 ~& z% g
|